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Abstract. The Hamiltonian for two-sublattice Heisenberg ferromagnets and ferrimagnets
with different sublattice anisotropies, which is applicable for rare-earth–transition-metal (R–T)
intermetallics, is established. In order to study spin-waves in easy plane or easy cone
configuration, a transformation of spin-vector coordinates is performed by rotating the
quantization axis frame by Eulerian angles and accordingly the Hamiltonian. Spin-wave spectra
at low temperatures of the present system are determined by performing the standard Holstein–
Primakoff transformation and a four-step diagonalizing procedure consisting of two coupled
Cullen transformations, an extended Bogoliubov transformation, two independent Bogoliubov
transformations and two independent Holstein–Primakoff transformations. The results for the
ground states of the easy axis, the easy plane and the easy cone configurations are compared
with those obtained by the mean-field theory. The border lines between the different spin
structures are derived in either the pure classical limit or the large-exchange limit. Continuous
transitions, accompanied with the continuous change of the angle between the averaged sublattice
magnetizations, are found in both cases. It is found that splittings of the spin-wave spectra of
the two-sublattice Heisenberg ferromagnets or ferrimagnets exist. A gap can appear in the spin-
wave spectra, depending on the competition among the exchange and the anisotropies. Other
physical properties, such as sublattice magnetization and specific heat, are discussed also.

1. Introduction

Rare-earth (R)–transition metal (T) intermetallics have attracted great interest due to their
outstanding permanent magnetic properties [1], which, in most cases, can be satisfactorily
explained by a phenomenological two-sublattice model [2–4]. This model simply treats the
total contribution of the magnetic properties as arising separately from the rare-earth and
the transition-metal sublattices, considering R–T exchange interaction between the moments
of the two sublattices. For light rare-earth elements, the R–T exchange results in the
ferromagnetic coupling of the moments of the two sublattices. For heavy rare-earths, it
favours an antiparallel (i.e., ferrimagnetic) alignment of the moments. In recent years,
many experiments have shown the existence of anisotropies in both sublattices, which play
an important role in determining the magnetic properties of such materials. These give an
impetus to theoretical investigation on this subject.
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It is usually assumed that the R–T exchange is strong enough to couple collinearly the
moments of the sublattices at zero magnetic field. A recent work showed that in a two-
sublattice system there exist two different spin configurations in the absence of external
field [5]. Depending on the competition among the exchange and the opposite anisotropies
of the two sublattices, the canting spin structures may occur in either ferromagnetic or
ferrimagnetic materials. The phase diagrams of the different spin configurations (i.e., the
collinear and the non-collinear ones) at either zero or non-zero field have been determined
by a mean-field analysis for the two-sublattice system [5, 6].

Besides the phenomenological approach, quantum models may be used to describe the
magnetic properties of such a system. The most powerful approach is the mean-field–
crystal-field (MF–CEF) approximation [7–10]. This description lies between an atomistic
one, which describes the CEF upon the R ion by a HamiltonianHCEF , and a very
simplified mean-field one to deal with the exchange interaction. This model treats the
weaker anisotropy of the T sublattice within the phenomenological model. The limitation
of this approach is that it is a computational one, fitting the experimental data by an adequate
choice of the parameters involved. It hardly reveals the detailed physical processes involved
in the complexity of the spin reorientation phenomenon.

The uniaxial (or non-uniaxial) Heisenberg model with nearest-neighbour, next-nearest-
neighbour and even third-neighbour interactions has been the subject of great interest for
more than ten years [11–14]. The main feature of the results obtained from these models is
the large number of modulated structural phases arising from the variation of the interaction
strengths and temperature. The spin wave spectrum at low temperatures is a main subject
of the study of the Heisenberg antiferromagnets. The effects of single-ion uniaxial (or non-
uniaxial) anisotropy on the magnetic properties of antiferromagnets have been extensively
studied [15–17]. Investigations on two-sublattice ferromagnets or ferrimagnets with different
sublattice single-ion anisotropies were made by various authors in the 1960s and early 1970s
[18–31] for the rare-earths. Based on a one-sublattice model, del Moral used the spin-
wave approximation to study the spin-reorientation transitions in the ferromagnetic systems
with competing axial–planar anisotropies, i.e., the R–T intermetallics(RE′xRE1−x)2Fe14B
and (RE′xRE1−x)Co5 [32, 33]. The transformation of spin vector coordinates, rotating the
quantization axis frame by Eulerian angles (θ andψ), was proposed by del Moral [32, 33]
to deal with the spin waves for the easy plane or easy cone configuration.

The aim of this paper is to study the spin-wave spectra at low temperatures of two-
sublattice Heisenberg ferromagnets and ferrimagnets with different sublattice anisotropies,
which is applicable for the R–T intermetallics. The two sublattices (i.e., the R and
the T ones) have different anisotropies, but also different spin amplitudes. Since the
linear-spin-wave theory [34, 35] (the leading term in the 1/S expansion) gives fairly
good results for the quantum corrections to various physical quantities [36–40], we shall
treat the spin fluctuations within the linear-spin-wave theory. The Hamiltonian for two-
sublattice Heisenberg ferromagnets and ferrimagnets with different sublattice anisotropies
will be established in section 2. In order to study the spin waves in the easy plane or
easy cone configuration, as proposed by del Moral [32, 33], the transformation of spin-
vector coordinates, rotating the quantization axis frame by Eulerian angles (θ andψ) and
accordingly the Hamiltonian, and the standard Holstein–Primakoff transformation [41] will
be performed. In section 3, spin-wave spectra at low temperatures of the present system
will be determined by performing a diagonalizing procedure which consists of two coupled
Cullen transformations [42], an extended Bogoliubov transformation [43], two independent
Bogoliubov transformations [43] and two independent Holstein–Primakoff transformations
[41]. The ground state and the spin-wave excitation for the easy axis, the easy plane and
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the easy cone configurations will be studied briefly in sections 4 and 5. Other physical
properties, such as sublattice magnetization and specific heat, will be discussed in section 6.
Section 7 is for concluding remarks.

2. Hamiltonian and rotate transformation

In this work, we investigate the two-sublattice Heisenberg ferromagnets and ferrimagnets
with different sublattice anisotropies, modelled by the following Hamiltonian:

H = −J
∑
〈i,j〉

Si · Sj −KA
∑
i

(Szi )
2−KB

∑
j

(Szj )
2 (2.1)

whereJ is the isotropic exchange constant. A positiveJ is for ferromagnetic coupling
whereas a negativeJ is for a ferrimagnetic one.KA andKB are the anisotropy constants for
the sublattices A and B, respectively. A positiveKA (orKB) favours an easy axis alignment
of spins in the sublattice A (or B), whereas a negative value tends to the easy plane. To
simplify, in this work, we neglect the anisotropies within the basal plane.Si = 〈Sxi , Syi , Szi 〉
are operators belonging to the spin-S representation [46].

We restrict ourselves to the low-temperature region ofT � TC . The spin-wave
approximation naturally assumes small spin deviations from the quantization axis. For
the present system, the natural quantization axis is the averaged magnetization direction.
If the system were near the easy axis configuration, it would be reasonable to assume that
the original ferromagnetic state or Néel state is easy axis, in which all spins couple parallel
or antiparallel to thez axis, but in the present system, other spin configurations, such as
easy plane and easy cone ones, exist when the nonuniaxial anisotropy is dominant. For
studying the spin waves in the easy plane or easy cone configuration, as proposed by del
Moral [32, 33], one needs to rotate the quantization axis frame by Eulerian anglesθ andψ
[32, 33, 44, 45].

By use of the Holstein–Primakoff transform [41] and the linear-spin-wave approximation
[34, 35], retaining terms up to the second order in the boson operatorsa+i , ai , b

+
j andbj ,

we have

H =H0
0 + A

∑
i

a+i ai + B
∑
j

b+j bj +
C

Z

∑
iδ

(aibi+δ + a+i b+i+δ)

+D
Z

∑
iδ

(aib
+
i+δ + a+i bi+δ)+ A′

∑
i

(a+i a
+
i + aiai )+ B ′

∑
j

(b+j b
+
j + bjbj )

+ A′′√
N

∑
i

(a+i + ai )+
B ′′√
N

∑
J

(b+j + bj ). (2.2)

The parameters in (2.2) are shown in appendix A.
The Hamiltonian (2.2) is rewritten by introducing the Fourier transforms of the boson

operators in the reduced Brillouin zone:

H =H0
0 + A

∑
k

a+k ak + B
∑
k

b+k bk + C
∑
k

γk(a
+
k b
+
k + akbk)

+D
∑
k

γk(a
+
k bk + akb+k )+ A′

∑
k

(a+k a
+
−k + aka−k)

+B ′
∑
k

(b+k b
+
−k + bkb−k)+ A′′(a+0 + a0)+ B ′′(b+0 + b0). (2.3)
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with

γk = 1

Z

∑
δ

eik·δ. (2.4)

3. Diagonalizing procedure

The Hamiltonian (2.3) is very complicated: different kinds of non-diagonal term exist. The
bi-linear terms in the Hamiltonian (2.3) are similar to those of the second case denoted
in [24], while the linear terms are similar to those in [32] and [33]. This Hamiltonian
can be diagonalized by the following four-step diagonalizing procedure. First, two coupled
Cullen diagonalization transformations [42] are employed to eliminate the linear terms in
a+0 , a0; b+0 , b0 in equation (2.3). Second, an extended Bogoliubov transformation [43] is
developed, which is asymmetrical for the positive and negativek spaces, so that the non-
diagonal termsa+k b

+
k , akbk, a

+
k bk and akb

+
k can be eliminated. Third, two independent

Bogoliubov transformations [43] are used and, finally, two independent Holstein–Primakoff
transformations [41] are applied to remove the remains of the non-diagonal terms. The later
three-step diagonalizing procedure is equivalent to the four-step diagonalizing procedure
developed in [24].

3.1. The first step: two coupled Cullen transformations

The linear terms ina+o , ao; b
+
0 , b0 in (2.3) can be eliminated by using two Cullen

diagonalization transformations [32, 33, 42], separately, in their forms

ak = fk + ckδk,0
a+k = f+k + c+k δk,0

(3.1)

and

bk = gk + dkδk,0
b+k = g+k + d+k δk,0

(3.2)

where the Fourier transformsc0 and d0 represent frozen-in uniform spin deviations. In
the present case, the two Cullen transformations are coupled since the non-diagonal terms
a+k b

+
k , akbk, a

+
k bk andakb

+
k exist in Hamiltonian (2.3). The new diagonalized Hamiltonian

containsk 6= 0 terms identical to (2.3), but witha+k , ak; b
+
k , bk substituted by thef+k , fk;

g+k , gk operators and a newk = 0 term of the form

H1
0 = A|c0|2+ A′(c2

0 + (c+0 )2)+ A′′(c0+ c+0 )+ B|d0|2+ B ′(d2
0 + (d+0 )2)+ B ′′(d0+ d+0 )

+C(c+0 d+0 + c0d0)+D(c+0 d0+ c0d
+
0 )

= (A+ 2A′)c2
0 + 2A′′c0+ (B + 2B ′)d2

0 + 2B ′′d0+ 2(C +D)c0d0. (3.3)

3.2. The second step: an extended Bogoliubov transformation

To eliminate the non-diagonal termsfkg
+
k , fkgk, f

+
k gk andfkg

+
k , one needs to develop an

extended Bogoliubov transformation. The transformation matrix is written as
α+k
αk
β+k
βk

 =

a1k a2k a3k a4k

a2k a1k a4k a3k

a3k a4k a1k a2k

a4k a3k a2k a1k



f+k
fk
g+k
gk

 (3.4)
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and consequently its reversed matrixAjk(j = 1, 2, 3, 4) [46]. This transformation is
asymmetrical for the positive and negativek spaces. The transformation matrix in the
−k space is: 

α+−k
α−k
β+−k
β−k

 =

a1k −a2k a3k −a4k

−a2k a1k −a4k a3k

a3k −a4k a1k −a2k

−a4k a3k −a2k a1k



f+−k
f−k
g+−k
g−k

 . (3.5)

The problem becomes to solve the equation group (denoted as E and shown in
appendix B), consisting of eight equations (i.e., (B.1)–(B.4) and (27)–(30) in [46]) and eight
unknowns (i.e.,aik andAjk(i = 1, 2, 3, 4; j = 1, 2, 3, 4)). This is similar to that developed
in a recent paper for diagonalizing the spin-wave Hamiltonian of the four sublattice systems
[46]. The procedure for solving this equation group is represented in appendix C.

After performing the extended Bogoliubov transformation, the Hamiltonian (2.3)
becomes

H =H0
0 +H1

0 +H2
0 +

∑
k

Ak1α
+
k αk +

∑
k

Bk1β
+
k βk +

∑
k

Ak2(α
+
k α
+
k +αkαk)

+
∑
k

Bk2(β
+
k β
+
k + βkβk)+

∑
k

Ak3(α
+
k α
+
−k +αkα−k)

+
∑
k

Bk3(β
+
k β
+
−k + βkβ−k). (3.6)

The parametersH2
0, Aki andBki(i = 1, 2, 3) are given in appendix D. The splitting of two

energy levels exists, which is ascribed to the positive and negative signs in the formula of
K (see (C.6)).

3.3. The third step: two independent Bogoliubov transformations

Next, one of two Bogoliubov transformations is

α+k = l1kµ+k + l2kµk
α−k = l1kµ−k − l2kµ+−k

(3.7)

with

l1k =
(

1+ εk
2εk

)1
2

l2k =
(

1− εk
2εk

)1
2

(3.8)

εk =
(

1−
(

2Ak2

Ak1

)2)1
2

and the other is similar to that above.
After performing these transformations, one reduces the Hamiltonian (3.6) to

H =H0
0 +H1

0 +H2
0 +H3

0 +
∑
k

Ck1µ
+
k µk +

∑
k

Dk1ν
+
k νk+

∑
k

Ak3(µ
+
k µ
+
−k + µkµ−k)

+
∑
k

Bk3(ν
+
k ν
+
−k + νkν−k). (3.9)

The parameters in Hamiltonian (3.9) are not shown here for simplicity. At this step, the
non-diagonal termsα+k α

+
k , αkαk, β

+
k β
+
k andβkβk are removed.
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3.4. The fourth step: two independent Holstein–Primakoff transformations

Then, one needs to use two independent Holstein–Primakoff transformations to eliminate
the remains of the non-diagonal terms, one of which is described as follows:

µ+k =
1√
2

[n1k(ζ
+
k + ζ+−k)+ n2k(ζk − ζ−k)]

µ−k =
1√
2

[n1k(ζk − ζ−k)+ n2k(ζ
+
k + ζ+−k)]

(3.10)

with

n1k =
(

1+ ρk
2ρk

)1
2

n2k =
(

1− ρk
2ρk

)1
2

(3.11)

ρk =
√

1−
(
Ak3

Ck1

)2

.

Finally, one finds

H =H0
0 +H 1

0 +H2
0 +H3

0 +H4
0 +

∑
k

h̄ω
(+)
k ζ+k ζk +

∑
k

h̄ω
(−)
k η+k ηk. (3.12)

HereH0
0 andH1

0 are given in (A.1) and (3.3), and other parameters are not shown for
simplicity.

4. Ground state

Following the analysis in the last section, one obtains the spin-wave spectra for the present
system. In this section, we will discuss briefly the ground state for different configurations.

The energy of the ground state of the present system is

E0 =H0
0 +H1

0 +H2
0 +H3

0 +H4
0 . (4.1)

The easy direction of the magnetization can be determined by the equilibrium conditions:

∂E0

∂θA
= 0 (4.2)

∂E0

∂θB
= 0 (4.3)

and the criterion

1 = ∂2E0

∂θ2
A

∂2E0

∂θ2
B

−
(
∂2E0

∂θA ∂θB

)2

> 0. (4.4)

4.1. In the pure classical limit

In the pure classical limit, the free energy becomes

E0 = −NZJ [SA(SB + 1)+ SB(SA + 1)] cos(θA − θB)−NKASA(SA + 1) cos2 θA
−NKBSB(SB + 1) cos2 θB (4.5)



R–T intermetallics 8107

and the equilibrium conditions of (4.2) and (4.3) yield

sin 2θA + y ′ sin 2(θA + α) = 0 (4.6)

−x ′ sin α + y ′ sin 2(θA + α) = 0 (4.7)

with α = θB − θA and

x ′ = −ZJ [SA(SB + 1)+ SB(SA + 1)]

KASA(SA + 1)
(4.8)

y ′ = KBSB(SB + 1)

KASA(SA + 1)
. (4.9)

(4.6) and (4.7) are just the same as (3.2) and (3.3) in our previous paper [5] in which the spin
configurations in the absence of an external magnetic field were systematically investigated
for a two-sublattice system.

Although the definitions of (4.8) and (4.9) forx ′ and y ′ differ from x and y in (3.1)
of [5], the results obtained in that paper can be directly taken for the present investigation.
Following the analysis in [5], one can obtain an explicit expression for the canting angleα

between the two-sublattice moments:

sin2 α = 1− [x ′(1− y ′)]2

4(y ′2− x ′2y ′) . (4.10)

The definitions of (4.8) and (4.9) forx ′ andy ′ can be written as

x ′ = (1+ z)x (4.11)

y ′ = zy (4.12)

with

x = −ZJ
KA

(4.13)

y = KB

KA
(4.14)

z = SB(SB + 1)

SA(SA + 1)
(4.15)

Then the conditions for non-collinear configurations obtained by the spin-wave theory are

− 2yz

(1+ yz)(1+ z) 6 x 6
2yz

(1+ yz)(1+ z) if y < −1

z
(4.16)

2yz

(1+ yz)(1+ z) 6 x 6 −
2yz

(1+ yz)(1+ z) if 0 > y > −1

z
. (4.17)

The phase diagrams of the spin configurations at zero field, obtained by the spin-wave
theory, are represented in figure 1. Comparing with the results obtained by the mean-field
theory [5], one finds that the difference between the spin amplitudes of the two-sublattices
affects the border of the different spin configurations. If there is no difference between the
spin amplitudes, i.e., in the case ofz = 1, the spin-wave results will be the same as the
mean-field ones.

Our results above differ from those obtained by del Moral [32], who argued that
classically second-order anisotropy terms alone are unable to produce a continuous spin
canting angle. The main reason is that the del Moral paper [32] was actually based
on a one-sublattice model. Our results indicate that continuous transitions occur in the
two-sublattice systems, accompanied with the continuous change of the angle between the
averaged sublattice magnetizations.
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Figure 1. A phase diagram of the spin configurations in a two-sublattice system, derived by
means of the spin-wave theory.x, y and z are defined in (4.13)–(4.15). The border between
the different spin configurations is described by (4.16) and (4.17). The solid, the dashed and the
dotted lines correspond toz = 1, 0.6 and 0.2, respectively. The parameters in the phase diagram
cover those of all R–T compounds when only the second-order anisotropies are considered.

4.2. The quantum effects

4.2.1. Easy axis. The easy axis configurations are collinear.A′′ = B ′′ = 0 so thatH1
0 = 0,

andA′ = B ′ = 0. This makes the second and third steps of the diagonalizing procedure in
the last section unnecessary and thusH3

0 = H4
0 = 0. The energy of the ground state for

ferromagnets is

E0 =H0
0 +H2

0 = −NZJSA(SB + 1)−NZJSB(SA + 1)−NKASA(SA + 1)

−NKBSB(SB + 1) (4.18a)

including the energy of the original state, only. The energy of the ground state for
ferrimagnets is

E0 =H0
0 +H2

0 = −NZ|J |SA(SB + 1)−NZ|J |SB(SA + 1)−NKASA(SA + 1)

−NKBSB(SB + 1)

+
∑
k

√
(Z|J |(SA + SB)+KASA +KBSB)2− 4Z2J 2SASBγ

2
k (4.18b)

which includes the energies of the original state and zero-point quantum fluctuations.

4.2.2. Easy plane and easy cone.The easy cone configuration is very complicated: the
average magnetization directions of the two-sublattice are not collinear. In this case, all
parametersA′, B ′, A′′ andB ′′ are not equal to zero and all terms in Hamiltonians (3.4)
remain. The energies of the ground states are functions of the anglesθA andθB . There is



R–T intermetallics 8109

no simple form for the energy of the ground state of the easy cone configuration and one
needs to list all terms ofE0 in (4.1).

To simplify, in this paper, we only show the results obtained in the large-exchange
limit, which are appropriate for the districts close to the borders between the collinear and
non-collinear spin structures. These results are suitable for the easy plane configurations,
by extrapolatingθA = θB = π/2 (or θA = θB = 3π/2) for ferromagnets andθA = π/2 and
θB = 3π/2 (or θA = 3π/2 andθB = π/2) for ferrimagnets. One has

E0 =H0
0 +H1

0 +H2
0 +H3

0 +H4
0 = E′0+

1

2

∑
k

√
(�k − 0k +11)(�k + 0k +12)

+1

2

∑
k

√
(�k − 0k −11)(�k + 0k −12). (4.19)

The parameters in (4.19) are shown in appendix E. Equation (4.19) consists of the energies
of the original state and the zero-point quantum fluctuations and the uniform (k = 0) spin
canting fluctuations from thec axis. Similar to the del Moral results [32], the uniform
(k = 0) spin canting fluctuations represent a spin reorientation from thec axis at 0 K due
to the quantum fluctuations.

The equilibrium directions of the magnetization are determined by the equilibrium
conditions, shown in (4.2) and (4.3), which usually cannot be solved analytically so a
numerical method must be used. The criterion of (4.4) is necessary for determining the
minimum state of the system. One should keep in mind that the equations (4.19) and (E.1)–
(E.5) were derived in the large-exchange limit, and are only suitable for the easy plane or
for the easy cone zones near to the border lines between the collinear and non-collinear
spin configurations. Nevertheless, these results can be used to determine the border lines
approximately (here we omitted them to avoid numerousness in algebra). This confirms
that the continuous transitions still exist.

5. Spin-wave excitation

In this section, the spin-wave excitation will be discussed for different ground states.

5.1. Easy axis

When the ground state is of the easy axis configuration, the spin-wave spectra of the present
system are

h̄ω
(±)
k = ±

√
(Z|J |(SB − SA)+KASA −KBSB)2+ 4Z2J 2SASBγ

2
k

+[Z|J |(SA + SB)+KASA +KBSB ] (5.1a)

and

h̄ω
(±)
k =

√
(Z|J |(SA + SB)+KASA +KBSB)2− 4Z2J 2SASBγ

2
k

±[Z|J |(SB − SA)+KASA −KBSB ] (5.1b)

for ferromagnetic and ferrimagnetic materials respectively. Some examples for the spin-
wave dispersions are shown in figures 2(a) and (b), respectively, for ferromagnets and
ferrimagnets. For comparison, we list here experimental data for some R–T compounds:
Ho2Co14Fe3, nRT = 0.54 kg T A−1 m−2, MR = 84.5 A m2 kg−1, MT = 130.2 A m2 kg−1,
KT

1 = 220 J kg−1, KR
1 = −760 J kg−1, KR

2 = 60 J kg−1 [47]; Nd2Fe14B, nRT =
1.0 kg T A−1 m−2, MR = 16.4 A m2 kg−1, MT = 175.9 A m2 kg−1, KT

1 = 119 J kg−1,
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KR
1 = −3270 J kg−1, KR

2 = 7840 J kg−1, KR
3 = −3500 J kg−1 [48]. The spin-wave

spectra are very sensitive to the strength of the anisotropies, the exchange constant and the
spin amplitudes. For certain values of the parameters, the frequencies of two branches of
the spin waves decrease (or increase) with increasing value ofγ 2

k in the same trend. The
splittings of the spin-wave spectra always exist for ferromagnets, and, with the exception of

Z|J |(SB − SA)+KASA −KBSB = 0 (5.2)

for ferrimagnets. The conditions for the presence of the acoustic branch of the spin-waves
are

(ZJSB +KASA)(ZJSA +KBSB)± Z2J 2SASB = 0. (5.3)

The upper sign is for the ferromagnet while the lower sign is for the ferrimagnet. In other
cases, thek = 0 gap always exists and thus the two branches of the spin-wave spectra
are optical. It is understood that the single-ion uniaxial and/or non-uniaxial anisotropy is
favourable to the relative motion of the spins for ferromagnetic and ferrimagnetic two-
sublattice structures.

For some values of the anisotropies, as shown in figure 2(b), the frequencies of the
spin waves in ferrimagnets become soft in the vicinity of the centre of the Brillouin
zone. Furthermore, imaginary frequencies can appear in the vicinity of the centre of the
Brillouin zone. The quantum fluctuations shift the sublattice configuration from the classical
configuration, even at 0 K if the following condition is satisfied:

Z|J |(SA + SB)+KASA +KBSB + 2Z|J |
√
SASBγk > 0. (5.4)

Z|J |(SA + SB)+KASA +KBSB − 2Z|J |
√
SASBγk 6 0. (5.5)

This vicinity may be extended to nearly fill out the Brillouin zone (except forγk = 0) so
that the real frequency of the spin-waves only appears on the boundary of the Brillouin
zone in the following condition:

Z|J |(SA + SB)+KASA +KBSB = 0. (5.6)

5.2. Easy plane and easy cone

The spin-wave spectra of the easy plane ground state or the easy cone one (in the large-
exchange limit) may be written as

h̄ω
(±)
k =

√
(�k − 0k ±11)(�k + 0k ±12). (5.7)

The parameters in (5.7) are the same as those defined in (E.2)–(E.5).
When11 = 12 = 0, i.e., the conditions of

Z|J |(SA ± SB) cos(θA − θB)+KASA cos2 θA +KBSB cos 2θB = 0 (5.8)

and

KASA sin2 θA −KBSB sin2 θB = 0 (5.9)

are satisfied, the splitting of the spin-wave spectra is removed. The conditions for the
presence of the acoustic branch of the spin-waves are

�0− 00±11 = 0 (5.10)

or

�0+ 00±12 = 0 (5.11)

where�0 and00 are values of�k and0k in (E.2) and (E.3), fork = 0.
The conditions for the imaginary frequencies are

(�k − 0k ±11)(�k + 0k ±12) 6 0. (5.12)
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(a)

(b)

Figure 2. Spin-wave dispersions of the easy axis configurations in a two-sublattice system,
described by (5.1a) and (5.1b) respectively for (a) ferromagnetic and (b) ferrimagnetic materials.
The solid and the dotted lines correspond to the spin-wave spectra ¯hω+k andh̄ω−k , respectively.
The parameters used areSA = 5/2, SB = 9/2. Z = 6, J = 1, KA = 10.
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6. Sublattice magnetization and specific heat at low temperatures

The sublattice magnetization and specific heat at low temperature are interesting subjects
of many investigations. In this section, we shall discuss briefly these topics for different
ground states.

6.1. Easy axis

For easy axis ferromagnets, it can be seen, from (4.18a), there is no quantum fluctuation
as well as the deviation to the original state at 0 K.

For easy axis ferrimagnets, in practice, the fourth term inE0 of (4.18b) represents the
deviation to the original state at 0 K. Following the normal procedure, one obtains the
deviation of the sublattice magnetization at 0 K of the present ferrimagnetic Heisenberg
system:

10zA = 10zB =
1

2

∑
k

[
1√

1− γ ′2k
− 1

]

= 1

2

∑
k

[(√
1− 4Z2J 2SASBγ

2
k

(Z|J |(SA + SB)+KASA +KBSB)2
)−1

− 1

]
. (6.1)

The deviation of the sublattice magnetization is decreased by means of the anisotropies
in comparison with that of the usual Heisenberg antiferromagnetic system. When
the frequencies of the spin-wave modes are imaginary, the deviation of the sublattice
magnetization is also smaller than that of the usual system. In the limiting cases of (5.6),
the spin-wave excitation only exists near the boundary of the Brillouin zone and then the
deviation of the sublattice magnetization at 0 K becomes quite small.

The temperature dependence of the magnetization may be re-evaluated by

1M(T ) = M(0)−M(T ) = M(0)

N |SA ± SB |
∑
k

〈nk〉T

= M(0)

N |SA ± SB |
[∑

k

〈ξ+k ξk〉T +
∑
k

〈η+k ηk〉T
]
. (6.2)

Here positive and negative signs correspond to ferromagnets and ferrimagnets, respectively.
For low temperatures (X = h̄ω/kBT � 1), replacing the Bose factor 1/(ex − 1) by e−x is
valid in the long-wavelength region of momentum integration. Focusing on the districts in
the vicinity of the centre of the Brillouin zone, one finds that the temperature dependence of
the magnetization at low temperatures of the present system is the same as the BlochT 3/2 law
in a ferromagnet. For the ferromagnets, the term contributed by the lower energy level ¯hω−k
is dominant, but for the ferrimagnets, the temperature dependence of the magnetization can
be dominated by the term of ¯hω−k andh̄ω+k , depending on which level is lower. Similarly,
the internal energy and the specific heat at low temperatures of the present system satisfy
theT 5/2 and theT 3/2 laws, respectively. These temperature behaviours are similar to those
of a ferromagnet, due to the effect of the different sublattice anisotropies and/or the different
spin amplitudes.

In the region where the frequencies of the spin-waves are imaginary, the calculation
for the temperature behaviours of the physical quantities cannot be performed under the
assumption of the long-wavelength approximation and becomes much more difficult.
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6.2. Easy plane and easy cone

For the easy plane (or easy cone) spin structure, the deviation of the sublattice magnetizations
is controlled by the zero-point quantum fluctuation and the uniform (k = 0) spin canting
fluctuation shown in section 4.2.2. The temperature dependence of the magnetization, the
internal energy and the specific heat at low temperatures can be derived from the spin-wave
spectra obtained in section 5.2. The free energy of the system can be described by

E = E0+ Ek(T ) = E0− kBT ln
∏
k

1

1− exp(−εk/kBT ) (6.3)

whereE0 includes the contributions of the static ground-state energy (consisting of the
original-state energy and the uniform (k = 0) spin canting fluctuation energy) and the
zero-point quantum fluctuation energy.Ek(T ) is the free energy of a thermally excited
magnon.

The free energyE of the system is a function of the order parametersθA and θB (or
α). The minimization of the free energyE gives the solutions for the equilibrium values of
the order parameters at finite temperatures. One may analyse the temperature dependence
of the order parametersθA andθB (or α) at low temperatures. Spin-reorientation transition
with the change of the canting angleα between the averaged sublattice moments can be
demonstrated, which is characteristic of two-sublattice systems. The physical contents of
the spin-reorientation transition in the present two-sublattice system are different from those
in the del Moral model [32, 33]. However, the representations of these properties are very
complicated and, usually, a numerical method with the aid of a computer is needed.

7. Concluding remarks

The main results obtained in this work may be listed as follows.

(1) The degeneracy of the spin-wave spectrum of a normal Heisenberg ferromagnet or
antiferromagnet can be removed by the different sublattice anisotropies and/or the different
spin amplitudes.

(2) Gaps can appear in the spin-wave spectra, depending on the competition among the
exchange and the anisotropies. In most cases of the present system, only the optical branches
of the spin-waves can be excited and the spins favour the relative motion in presence of the
anisotropies.

(3) In some cases, the spin-wave mode becomes soft and gains imaginary frequencies
close to the centre of the Brillouin zone at low temperatures.

(4) The ground states of the easy axis, the easy plane and the easy cone configurations
were discussed briefly. The border lines between the different spin structures in the pure
classical limit were derived to be similar to those obtained based on a mean-field two-
sublattice model. The difference between the spin amplitudes of the two sublattices affects
the border of the spin configurations. The continuous transitions, accompanied with the
continuous change of the angle between the sublattice magnetizations, were found to occur
in either the pure classical limit or the large-exchange limit.

(5) There is no deviation of the sublattice magnetization in the easy axis Heisenberg
ferromagnets. The deviation of the sublattice magnetization of the Heisenberg ferrimanget at
0 K is decreased by the effect of the anisotropies. Under a certain condition, such deviation
becomes quite small.

(6) The temperature dependences of the magnetization and the specific heat of the easy
axis configurations satisfy the BlochT 3/2 laws. A numerical calculation is needed for the
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representation of the temperature dependence of the properties of the easy plane and the
easy cone configurations.
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Appendix A. Transformation of spin vector coordinates

After performing the transformation of spin vector coordinates as described in [32, 33, 44, 45]
and using the Holstein–Primakoff transform [41] and the linear-spin-wave approximation
[34, 35], one rewrites the Hamiltonian (2.1) as (2.2). The parameters defined in (2.2) are

H0
0 = −2NZSASBJ cos(θA − θB)−N

∑
i=A,B

Ki

(
S2
i cos2 θi + Si

2
sin2 θi

)
(A.1)

A = 2ZJSB cos(θA − θB)−KASA(3 sin2 θA − 2) (A.2)

B = 2ZJSA cos(θA − θB)−KBSB(3 sin2 θB − 2) (A.3)

C = −ZJ
√
SASB(cos(θA − θB)− 1) (A.4)

D = −ZJ
√
SASB(cos(θA − θB)+ 1) (A.5)

A′ = − 1
2KASA sin2 θA (A.6)

B ′ = − 1
2KBSB sin2 θB (A.7)

A′′ =
√

2NSA(KASA sinθA cosθA + JSB sin(θA − θB)) (A.8)

B ′′ =
√

2NSB(KBSB sinθB cosθB + JSA sin(θA − θB)). (A.9)

Appendix B. The equation group E

The commutation relations of the new operatorsα+k , β+k , αk, βk result in two equations:

a2
1k + a2

3k − a2
2k − a2

4k = 1 (B.1)

and

a1ka3k − a2ka4k = 0. (B.2)

To eliminate the non-diagonal terms ofα+k β
+
k , αkβk, α

+
k βk andαkβ

+
k , one needs to establish

the following two equations:

(A+B)(A1kA4k+A2kA3k)+γk[C(A2
1k+A2

2k+A2
3k+A2

4k)+2D(A1kA2k+A3kA4k)] = 0

(B.3)

(A+B)(A1kA3k+A2kA4k)+γk[2C(A1kA2k+A3kA4k)+D(A2
1k+A2

2k+A2
3k+A2

4k)] = 0

(B.4)

and the relations between the parametersaik andAjk are the same as those of (27)–(30) in
[46].
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Appendix C. Procedure for solving the equation group E

The equation group E, consisting of (B.1)–(B.4) and (27)–(30) of [46], can be solved by
the following procedure. Using the relation of (B.1), one may rewrite (27)–(30) of [46].
For instance, (27) of [46] becomes

A1k = 1

Y
[a1k + 2a3k(a2ka4k − a1ka3k)]. (C.1)

Then considering (B.2), one immediately obtains

Aik = aik

Y
(i = 1, 3) (C.2)

Aik = −aik
Y

(i = 2, 4). (C.3)

(B.3) minus (B.4) results in

(C −D)γk(a1k + a2k)
2− (A+ B)(a1k + a2k)(a3k + a4k)+ (C −D)γk(a3k + a4k)

2 = 0.
(C.4)

WhenC 6= D, (C.4) is equal to

a1k + a2k = K(a3k + a4k). (C.5)

Here

K = 1±√1−X2

X
(C.6)

with

X = 2(C −D)γk
A+ B . (C.7)

Now the equation group becomes (B.1), (B.2), (C.2), (C.3), (C.5) and one of (B.3) and
(B.4).

From (B.1) and (C.5), one has

a1k = K2− 1

2K
a3k + K

2+ 1

2K
a4k + 1

2K(a3k + a4k)
. (C.8)

Putting (C.5) into (B.2), one obtains:

a1k = Ka4k if a3k + a4k 6= 0. (C.9)

Combining (C.8) and (C.9) leads to

a1k = ±K
√

1

K2− 1
+ a2

3k. (C.10)

Combining (C.9) with (B.2) results in

a2k = Ka3k. (C.11)

Inserting (C.9)–(C.11) into (B.3), one finally finds

a1k = ±K
√
−√N2−M2±N

2(1−K2)
√
N2−M2

(C.12)

a2k = ±K
√ √

N2−M2±N
2(1−K2)

√
N2−M2

(C.13)
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a3k = ±
√ √

N2−M2±N
2(1−K2)

√
N2−M2

(C.14)

a4k = ±
√
−√N2−M2±N

2(1−K2)
√
N2−M2

(C.15)

or other four groups of solutionsa′1k = −a1k, a′2k = a2k, a′3k = a′3k, a4k = −a2k with

M = Cγk(K2+ 1)− (A+ B)K (C.16)

N = Dγk(K2+ 1). (C.17)

It is evident that the solutions of (C.12)–(C.15) satisfy the equation group E and that one
hasY = 1, and thusA1k = a1k, A2k = −a2k, A3k = a3k andA4k = −a4k. There are eight
groups of solutions in (C.12)–(C.15), in accordance with different signs in the equations,
which are equal for diagonalizing Hamiltonian (2.3).

Appendix D. Parameters in Hamiltonians in (3.6)

The parametersH2
0, Aki andBki(i = 1, 2, 3) in Hamiltonian (3.6) are as follows:

H2
0 = (A+ B)(a2

2k + a2
4k)− 2Cγk(a1ka4k + a2ka3k)+ 2Dγk(a1ka3k + a2ka4k) (D.1)

Ak1 = A(a2
1k + a2

2k)+ B(a2
3k + a2

4k)− 2Cγk(a1ka4k + a2ka3k)+ 2Dγk(a1ka3k + a2ka4k)

(D.2)

Bk1 = A(a2
3k + a2

4k)+ B(a2
1k + a2

2k)− 2Cγk(a1ka4k + a2ka3k)+ 2Dγk(a1ka3k + a2ka4k)

(D.3)

Ak2 = −Aa1ka2k − Ba3ka4k + Cγk(a1ka3k + a2ka4k)−Dγk(a1ka4k + a2ka3k) (D.4)

Bk2 = −Aa3ka4k − Ba1ka2k + Cγk(a1ka3k + a2ka4k)−Dγk(a1ka4k + a2ka3k) (D.5)

Ak3 = A′(a2
1k − a2

2k)+ B ′(a2
3k − a2

4k) (D.6)

Bk3 = A′(a2
3k − a2

4k)+ B ′(a2
1k − a2

2k). (D.7)

Appendix E. Parameters in Hamiltonians in section 4

The parameters in (4.19) are

E′0 = −NZJ [SA(SB + 1)+ SB(SA + 1)] cos(θA − θB)−N
∑
i=A,B

KiSi(Si + 1) cos2 θi

+(2ZJSB cos(θA − θB)−KASA(3 sin2 θA − 2))|c0|2
+(2ZJSA cos(θA − θB)−KBSB(3 cos2 θB − 2))|d0|2

−1

2
KASA sin2 θA(c

2
0 + (c+0 )2)−

1

2
KBSB sin2 θB(d

2
0 + (d+0 )2)

+
√

2NSA(KASA sin θA cosθA + SBJ sin(θA − θB))(c0+ c+0 )
+
√

2NSB(KBSB sin θB cosθB + SAJ sin(θA − θB))(d0+ d+0 ) (E.1)

�k =
[(
ZJ(SB ± SA) cos(θA − θB)

−1

2

∑
i=A,B

KiSi(3 sin2 θi − 2)

)2

± (cos(θA − θB)± 1)2Z2J 2SASBγ
2
k

] 1
2

(E.2)
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0k = 1

4�k

[
ZJ(SB ± SA) cos(θA − θB)

− 1∑
i=A,B

KiSi(3 sin2 θi − 2)

]
(KASA sin2 θA ±KBSB sin2 θB) (E.3)

11 = ZJ(SB ± SA) cos(θA − θB)− 1

4
(7KASA sin2 θA + 5KBSB sin2 θB)+KASA+KBSB

(E.4)

12 = ZJ(SB ± SA) cos(θA − θB)− 1

4
(5KASA sin2 θA + 7KBSB sin2 θB)+KASA+KBSB

(E.5)

where the upper signs correspond to the ferromagnets and the lower signs are for the
ferrimagnets.
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